

Achieving CPU (& MLC) Savings Through Optimizing Processor Cache

Todd Havekost, IntelliMagic Session 21045

Copyright© 2017 by SHARE Inc. Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 license. http://creativecommons.org/licenses/by-nc-nd/3.0/

@**!**\$=

- Key Processor Cache Concepts and Metrics
- Optimize LPAR Topology
- Maximize Work Executing on Vertical High CPs
 - Optimize LPAR weights
 - Increase number of physical CPs

Key Processor Cache Concepts & Metrics

Cycles per Instruction (CPI)

- Number of processor cycles spent per completed instruction
- Processor cycles are spent
 - Productively executing instructions present in L1 cache
 - Unproductively waiting to stage data (L1 cache or TLB miss)
- Note: "Waiting" does not always mean waiting
 - Out Of Order (OOO) execution
 - Other pipeline enhancements

Cycles Per Instruction

Relative Nest Intensity (RNI)

- How deep into the shared cache and memory hierarchy ("nest") the processor must go to retrieve data
- Access time increases significantly with each additional level (increasing processor wait time)
- Formulas are processor dependent: for z13, RNI =
 2.3 * (0.4*L3P + 1.6*L4LP + 3.5*L4RP + 7.5*MEMP) / 100
- Reducing RNI improves processor efficiency

Estimated Impact Cache Misses

3.5

3

2.5

2

1.5

0.5

812412151:10 AM

8124120152:00 km

812412015 3:00 km

81242015 4:00 104

8124/2015 5:00 44

812412015 6:00 MM

8124120157:00 MM

81242015 8:00 44

8124/2015 9:00 00

812APOIS LOOD AN

812A12015 11:00 AM

8124P20512:00 PM

8/24/2015 1:00 PM

8124120152:00 PM

8124120153:00 PM

812412015 6:00 PM

8124120155:00 PM

812412015 A:00 PM

8124120157:00 PM

8124120158:00PM

8124120159:00 PM

812A12015 10:00 PM

Cycles/Inst

Estimated Impact of Cache and TLB Misses (Cycles/Inst) Processor Cycles Per Instruction (Cycles/Inst) L2 Cache Miss Cycle Estimate (Cycles/Inst) L3 On-Chip Cycle Estimate (Cycles/Inst) L3 On-Node Cycle Estimate (Cycles/inst) L3 On-Drawer Cycle Estimate (Cycles/inst) L3 Off-Drawer Cycle Estimate (Cycles/inst) L4 On-Node Cycle Estimate (Cycles/inst) L4 On-Drawer Cycle Estimate (Cycles/inst) L4 Off-Drawer Cycle Estimate (Cycles/inst) Memory On-Node Cycle Estimate (Cycles/inst) Memory On-Drawer Cycle Estimate (Cycles/inst) Memory Off-Drawer Cycle Estimate (Cycles/inst) TLB Data Miss Cycle Estimate (Cycles/Inst) **Reducing RNI** improves CPI & processor efficiency

the same work to the same or nearby CP is vital to optimizing processor cache hits

HiperDispatch

- Interfaces with PR/SM & z/OS Dispatchers to align work to logical processors (LPs) & align LPs to physical CPs
- Memory Memory Repeatedly dispatching L4 Cache L4 Cache L3 Cache L3 Cache L3 Cache L3 Cache L1 L1 L1 L1 L1 L1 L1 PH1 (© IBM)

Vertical CP Assignments

- Based on LPAR weights and the number of physical CPs PR/SM assigns logical CPs as
 - Vertical High (VH) 1-1 relationship with physical CP
 - Vertical Medium (VM) has at least 50% share of a CP
 - Vertical Low (VL) has less than 50% share of a CP
- Work running on VHs has higher probability of cache hits
- Work running on VMs & VLs is subject to being dispatched on various CPs and contending with other LPARs

Cache Data Lifetime

8124129152:00 44

3 VHs

2 VMs

2 1.8 1.6 1.4 1.2 1 0.8

0.6

0.4 0.2 0

RNI Impact by Logical CP

Change: -19.11% Absolute change: -0.25

RNI Impact: VHs vs. VMs – 4 Sites

©**()**§=

RNI Impact: VHs vs. VMs – 4 More Sites SHARE

EDUCATE · NETWORK · INFLUENCE

Copyright 2017 by SHARE Inc. Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 license. http://creativecommons.org/licenses/by-nc-nd/3.0/

Optimizing Processor Cache – Recap

- CPU consumption decreases when we reduce unproductive cycles waiting for data to be staged into L1 cache
 - Represent significant component of overall CPU
 - RNI metric correlates to unproductive waiting cycles
 - Reducing RNI reduces CPU (and thus MLC software expense)
- Ways to reduce RNI
 - Optimize LPAR topology
 - Maximize work executing on VHs

Optimize LPAR Topology

Copyright© 2017 by SHARE Inc. Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 license. http://creativecommons.org/licenses/by-nc-nd/3.o/

LPAR Topology – Concepts

- PR/SM dynamically assigns LPAR CPs and memory to hardware chips, nodes and drawers, seeking to optimize processor cache efficiency
- LPAR topology can have a significant impact on performance, because remote accesses can take 100s of cycles
- This data is provided by SMF 99.14 records

z13 CPC Drawer Cache Hierarchy Detail

LPAR Topology – Sample Report

Processor Complex and LPAR information

For System 'SYS2'

Processors, LPARs and CECs with Hardware data: For System 'SYS2' by Processor Complex serial and Processor ID

	Processor Complex serial	System	Processor ID	Processor A	Processor Speed (Cycles/	Processor Ty	Relative Nest Inte	Estimated TLB1 CP	
Þ	IBM-CEC1	SYS2	0000	z13	5000.00	CP	0.871	4.280	^
	IBM-CEC1	SYS2	0002	z13	5000.00	CP	1.064	4.353	1
	IBM-CEC1	SYS2	<u>0004</u>	z13	5000.00	CP	1.381	4.521	
	IBM-CEC1	SYS2	0006	z13	5000.00	CP	3	4.324	\checkmark

Logical Processors assigned to LPAR: For System 'SYS2' by Processor ID and Logical Processor/Core ID

									· · · · · · · · · · · · · · · · · · ·		
	System	Processor ID	Logical Proc	Processo	Polarization	Core Capacity	Chip Id	Node/B	Drawer	Logical	
Þ	SYS2	0000	0000	CP	Vertical High	2000000	1	1	2	0	^
	SYS2	0002	0001	CP	Vertical High	2000000	1	1	2	0	
	SYS2	0004	0002	CP	Vertical Medium		2	1	2	0	
	SYS2	0006	0003	CP	Vertical Low		2	1	2	0	\checkmark

WLM Nodes for LPAR: For System 'SYS2' by WLM Node

	System	WLM Node	Proces	Vert	Vert	Vert	WLM Node Flags	WLM	Chip	Nod	Draw
Þ	SYS2	<u>0001</u>	CP	2	1	7	CPUs/cores on this node are boundary crossing		0	1	2
	SYS2	0002	zIIP	0	1	3	CPUs/cores on this node are boundary crossing		0	1	2

LPAR Topology – Scenario 1

	Chip 2		Chi	p 2	Chi	р3
	SY22 VM00		SY18	VM03	SY03	VH00
	SY22 VM01		SY18	VM04	SY03	VH01
Drawer 2	SY22 VL02	Drawer 3	SY16	VM00	SY03	VH02
Node 1	SY18 VH00	Node 1	SY16	VM01	SY03	VM03
	SY18 VH01		SY16	VL02	SY03	VM04
	SY18 VH02		SY16	VL03	SY16	VL04
			SY20	VM00		
			SY20	VL01		

RNI Impact by Logical CP – Scenario 1 SHARE

Change: -22.39% Absolute change: -0.33

©•••=

Estimated Impact Cache Misses – S1

@**()** ()

Impact Cache Misses by Logical CP

LPAR Topology – Scenario 2

LPAR Topology – Scenario 2

	Chi	p 1	Chi	p 2	Chip 3		
Drawer 3	SYSA	VM02	SYSA	VM03	SYSB	VH00	
Node 1	SYSB	VM04	SYSB	VL05	SYSB	VH01	
			SYSB	VL06	SYSB	VH02	
					SYSB	VH03	

	Chip 2	
Drawer 4	SYSA VH00	
Node 1	SYSA VH01	

Estimated Impact Cache Misses – S2

LPAR Topology – Scenario 3

- Initially PR/SM allocated VHs for both primary LPARs in same node
- LPAR memory increase forced PR/SM to distribute VHs across drawers

Drawer 2	Chi	p 1	Chip 2		
Node 1	SY07	VH00	SY17	VH00	
	SY07	VH01	SY17	VH01	
Before: 1 node	SY07	VH02	SY17	VH02	
480 MB	SY07	VH03	SY17	VH03	
L4L cache	SY07	VH04	SY17	VH04	

Impact of Topology Change – S3

- Improved % L1 misses sourced from L4 local cache (L4LP)
 2.3*(0.4*L3P + 1.6*L4LP + 3.5*L4RP + 7.5*MEMP) / 100
- 11.5% reduction in RNI \rightarrow 6% reduction in CPU

	L4LP	L4RP	MEMP	RNI
Before	4.38%	0.91%	4.85%	1.48
After	5.84%	0.59%	3.82%	1.31

Maximize Work Executing on VHs

Vertical CP Assignments

- PR/SM assigns logical CPs as VH / VM / VL based on LPAR weights and the number of physical CPs
- Methodology for vertical CP assignments for each LPAR
 - % Share = LPAR Weight / Sum of LPAR Weights
 - CP Share = % Share * Physical CPs
 - Assign that CP Share as VHs, VMs, and VLs
 - 1 or 2 VMs with >= 50% share of a CP
 - Remaining integer CP Share as VHs

Vertical CP Assignments – Examples

- Example 1
- LP01 VM: 80% share LP02 VMs: 60% share

8 CPs	Wgt	% Shr	CP Shr	Log CP	VHs	VMs	VLs
LP01	300	60%	4.8	6	4	1	1
LP02	200	40%	3.2	5	2	2	1

- Example 2
- LP11 VMs: 65% share LP12 VMs: 70% share LP13 VM: 30% share

8 CPs	Wgt	% Shr	CP Shr	VHs	VMs	VLs
LP11	550	55%	3.3	2	2	1
LP12	400	40%	2.4	1	2	1
LP13	50	5%	0.3	0	1	1

Vertical CPs – z13 Exception

- z13 prior to mid-2016
- LP02 VM: 80% share

9 CPs	% Shr	CP Shr	VHs	VMs	VLs
LP01	80%	7.2	6	2	1
LP02	20%	1.8	1	1	1

- Benefit: PR/SM more likely to configure 2 VMs on same chip
- 0 VHs as of z13 MCL Bundle 24 (6/2016)
- LP02 VMs: 90% share

9 CPs	% Shr	CP Shr	VHs	VMs	VLs
LP01	80%	7.2	6	2	1
LP02	20%	1.8	0	2	1

- Increase weights for high CPU LPARs
- Tailor weights to maximize assignment of VHs
- Customize weights by shift to reflect changes in workload
- Configure fewer, larger LPARs

Maximize Work on VHs – Example 1

• Small adjustments to LPAR weights may increase work executing on VHs (and thus reduce RNI)

12 CPs	% Shr	CP Shr	VHs	VMs	VLs	RNI
Before	70%	8.4	7	2	3	
After	71%	8.52	8	1	3	-2%

Maximize Work on VHs – Example 2

 "Ordinary" LPAR weight configurations can result in 0 VHs (post Bundle 24)

6 CPs	% Shr	CP Shr	VHs	VMs	VLs
LP01	34%	2.04	1	2	1
LP02	34%	2.04	1	2	1
LP03	16%	0.96	0	1	2
LP04	16%	0.96	0	1	2

6 CPs	% Shr	CP Shr	VHs	VMs	VLs
LP01	30%	1.8	0	2	2
LP02	30%	1.8	0	2	2
LP03	20%	1.2	0	2	1
LP04	20%	1.2	0	2	1

 With minor weight changes 33% of workload could execute on VHs

Maximize Work on VHs – Example 3

 LP04 will share 50% of workload with LP01 in future but is currently idle

13 CPs	% Shr	CP Shr	VHs	VMs	VLs
LP01	75%	9.75	9	1	3
LP02	10%	1.3	0	2	1
LP03	10%	1.3	0	2	1
LP04	5%	0.65	0	1	1

13 CPs	% Shr	CP Shr	VHs	VMs	VLs
LP01	40%	5.2	4	2	4
LPO2	10%	1.3	0	2	1
LP03	10%	1.3	0	2	1
LP04	40%	5.2	4	2	4

 Reduced overall RNI for the primary Production workload by over 10%

Maximize Work on VHs – # of Physical CPs

- Utilize sub-capacity processor models
- Activate On/Off Capacity on Demand (CoD) during monthly peak intervals
- Install or deploy additional hardware

Sub-capacity Hardware Models

- If single engine speeds or other considerations do not require full capacity models, sub-capacity models can be selected to add CPs without incurring hardware expense
- More VHs, reduced RNI, more realized capacity
- From z13-710, sub-capacity models could add 7-15 CPs

Total	zEC12-711	z13-710	z13-617	z13-525
MSUs	1593	1632	1610	1603

Activate On/Off Capacity on Demand

- If monthly peak intervals are predictable, On/Off Capacity on Demand (CoD) can be activated during those peak intervals with minimal incremental hardware expense
- Processor cache impact
 - More VHs and more work executing on VHs
 - Reduced RNI
 - Reduced CPU consumption
 - Reduced MLC expense

CEC /	CEC Model		CEC VHs		Sys VHs	
Sysid	Std	CoD	Std	CoD	Std	CoD
C4/SYS1	z13-728	z13-732	20	24	15	18
C3/SYS2	z13-724	z13-728	18	21	15	17

Reduced RNI with On/Off CoD

Reduced MSUs & MLC with On/Off CoD SHARE

Sysid	CEC Model		MSUs	Add	% CP	VH RNI	MSUs
	Std	CoD	/ CP	VHs	Util	Reduc	Reduc
SYS1	z13-728	z13-732	105	3	95%	96%	144
SYS2	z13-724	z13-728	102	2	95%	82%	79

Sysid	CEC Model		MSUs	\$/	\$ Sa	vings
	Std	CoD	Reduc	MSU	Monthly	Annually
SYS1	z13-728	z13-732	144	\$181	\$ 25,999	\$ 311,986
SYS2	z13-724	z13-728	79	\$181	\$ 14,382	\$ 172,583

Perspectives on Hardware Capacity

- Reexamine traditional perspective that running mainframe at high utilization is most cost-effective strategy
- Reexamine traditional "just in time" approach to deploying previously purchased capacity
- In today's mainframe budgets software typically represents a much larger expense than hardware
 - <u>Recurring</u> savings from substantially reducing MLC through processor cache efficiencies may justify <u>one-time</u> expense for acquisition of additional hardware capacity

ISVs as Barrier to Deploying Capacity

- ISV licenses appear to be a primary barrier
 - To deploying owned surplus capacity
 - To considering the acquisition of surplus capacity
- Strongly encourage effort to proactively convert all ISV licenses from capacity-based to usage-based
- It can be done ... and will position you to have options for substantial financial savings going forward!

Deploy HW Case 1 – zEC12 Baseline

Deploy HW Case 1 – z13 CPU Lift

Deploy HW Case 1 – 716 Upgrades

Deploy HW Case 1 – 726 Upgrades

Multiprocessing Effect

- Adding CPs increases overhead required to manage interactions between hardware & workloads
- Thus MSU/CP ratios for IBM processor ratings not linear
- Ratings based on LSPR workloads at 90% utilization

Savings from MSU/CP Ratings

- If workload remains same, CEC utilization decreases, and MP overhead will be minimal
- Lower MSU/CP rating translates directly into reduced MSUs for same workload

CEC	MSUs/CP	vs zEC12-711	vs z13-711
zEC12-711	144.8		-9.7%
z13-711	160.4	10.7%	
z13-716	147.4	1.8%	-8.1%
z13-726	131.3	-9.3%	-18.1%

Twofold Benefits of Deploying Capacity SHARE

- Consume less CPU due to operating efficiencies
 - Optimize LPAR Topology
 - Maximize work executing on VHs
- CPU that is consumed translates into fewer MSUs
 - Lower processor MSU/CP ratings

Twofold Benefits of Deploying Capacity SHARE

- "Acquiring more hardware capacity than needed to support the workload allows multiple benefits.
 - First it enables taking advantage of the lower MSU per engine rating of larger processor configurations, and
 - Second it enables benefits from the impacts of low utilization on processor capacity."
 - Kathy Walsh, IBM Whitepaper, rev. April 2017

Deploy HW Case 2 – z13 Upgrade

- Another High RNI workload
- Same two primary takeaways
 - Capacity shortfall migrating to the z13
 - Significant reduction in RNI by deploying additional hardware

Deploy HW Case 2 – Double Whammy

- Lateral MIPS upgrades reduce number of physical CPs
- Compounds the negative impact of the upgrade
 - Underachieve the z13 10% capacity rating increase
 - Reduce the number of VHs further impacting RNIs

Ratings	MIPS	MSUs
zEC12-728	28023	3301
z13-725	28130	3313

SYS1	zEC12	z13	z13+Upgr
VHs	6	5	7
RNI	1.25	1.67	1.40

Deploy HW Case 2 – RNI Impact

- Key Processor Cache Concepts and Metrics
- Optimize LPAR Topology
- Maximize Work Executing on Vertical High CPs
 - Optimize LPAR weights
 - Increase number of physical CPs

- IBM TechDocs Library
 - TD106388, "Number of Logical CPs Defined for an LPAR" (6/14/2016)
 - TD106389, "z13 HiperDispatch New MCL Bundle Changes Vertical CP Assignment for Certain LPAR Configurations" (6/30/2016)
 - WP102705, "Leveraging MSU Ratings for Better Value", Kathy Walsh (rev. 4/24/2017)
- Processor cache tuning and deploy hardware use case
 - Frank Kyne, "A Holistic Approach to Capacity Planning", Cheryl Watson's Tuning Letter (CWTL) 2015 #4
 - Kyne, "Introduction to CPU Measurement Facility", CWTL 2016 #4
 - IntelliMagic White Paper, "How to use Processor Cache Optimization to Reduce z Systems Costs", www.intellimagic.com/mlc
 - Todd Havekost, "Achieving Significant Capacity Improvements on the IBM z13 Processor – User Experience", SHARE 8/2016

Questions?

• Please fill out your session evaluations

 Thank you for attending – particularly on Friday morning!!

